SOAL GERAK PARABOLA BESERTA PEMBAHASAN

, , Leave a comment

Soal gerak parabola beserta pembahasan – Soal gerak parabola terdapat pada pelajaran fisika SMA. Soal ini sering keluar di Ujian Nasional, ulangan harian, dan soal SBMPTN atau soal masuk perguruan tinggi. Pada postingan kali ini fokusfisika.com akan membahas soal-soal gerak parabola. Berikut beberapa soal gerak parabola beserta pembahasannya.

Soal Fisika Gerak Parabola Beserta Pembahasan

Soal fisika gerak parabola beserta pembahasan no. 1
Sebuah paket logistik dijatuhkan dari sebuah pesawat tanpa kecepatan awal relatif terhadap pesawat. Saat menjatuhkan paket, pesawat tersebut berada pada ketinggian h dan sedang bergerak dengan kecepatan u dalam arah horizontal. Agar paket logistik mendarat tepat pada sasaran, jarak horisontal pesawat dari target pendaratan saat pilot menjatuhkan paket adalah ….
A. \(u\sqrt{\frac{h}{2g}} \)
B. \(u\sqrt{\frac{h}{g}} \)
C. \(u\sqrt{\frac{2h}{g}} \)
D. \(2u\sqrt{\frac{h}{g}} \)
E. \(2u\sqrt{\frac{2h}{g}} \)

Pembahasan soal gerak parabola no. 1 :
Waktu jatuhnya paket :
\begin{aligned}
h &= \frac{1}{2}gt^2 \\
t^2 &= \frac{2h}{g} \\
t &= \sqrt{\frac{2h}{g}}
\end{aligned}

Jarak horisontal :
\begin{aligned}
x &= u\cdot t \\
&= u\sqrt{\frac{2h}{g}}
\end{aligned}

Jawaban soal gerak parabola : C

Soal Gerak Parabola Beserta Pembahasannya

Soal gerak parabola beserta pembahasannya no. 2
Sebuah bola dilempar horisontal dari puncak sebuah menara setinggi h meter. Bola menumbuk tanah pada sebuah titik sejauh x meter dari kaki menara. Jika gravitasi adalah g dan sudut yang dibentuk oleh vektor kecepatan terhadap arah horisontal tetap sesaat sebelum bola menumbuk tanah adalah θ, nilai tan θ =
A. \(\sqrt{\frac{2h}{x}} \)
B. \(\sqrt{\frac{h}{2x}} \)
C. \(\frac{2x}{h} \)
D. \(\frac{h}{2x} \)
E. \(\frac{2h}{x} \)

Pembahasan soal gerak parabola no. 2:

Waktu yang dibutuhkan bola untuk sampai kaki menara :
\(t = \sqrt{\frac{2h}{g}} \)

Komponen kecepatan horisontal :
\(v_x = \frac{x}{t} = \frac{x}{\sqrt{\frac{2h}{g}}} \)

Komponen kecepatan arah vertikal :
\(v_y = gt = g\sqrt{\frac{2h}{g}} = \sqrt{2gh} \)

Nilai tan θ :
\begin{aligned}
\tan \theta &= \frac{v_y}{v_x} \\
&= \frac{\sqrt{2gh}}{\frac{x}{\sqrt{\frac{2h}{g}}}} \\
&= \sqrt{2gh} \times \frac{\sqrt{\frac{2h}{g}}}{x} \\
&= \frac{2h}{x}
\end{aligned}

Jawaban soal gerak parabola no. 2 : E

Soal Fisika Gerak Parabola beserta Pembahasan

Soal fisika gerak parabola beserta pembahasan no. 3
Perhatikan gambar berikut.
soal tentang gerak parabola dan pembahasan
Sebuah bola yang ditendang dari sebuah panggung setinggi 1,2 m dengan kelajuan awal 10 m/s dan sudut elevasi θ = 30o terhadap horisontal sehingga membentuk gerak parabola. Jarak mendatar l yang di tempuh bola ketika bola tersebut mengenai tanah adalah ….
A. 6,8 m
B. 7,5 m
C. 9,0 m
D. 10,4 m
E. 11,2 m

Pembahasan gerak parabola no 3:
Perhatikan gambar berikut :
contoh soal gerak parabola dan pembahasanya
Waktu yang dibutuhkan bola dari A ke C adalah :
\begin{aligned}
y &= v_o \sin \theta t – \frac{1}{2}gt^2 \\
-1,2 &= (10\sin 30)\cdot t – \frac{1}{2}\cdot 10t^2 \\
-1,2 &= 5t – 5t^2 \\
t^2 -t -0,24 &= 0
\end{aligned}

Menggunakan rumus ABC untuk mencari t :
\begin{aligned}
t &= \frac{-b\pm\sqrt{b^2-4ac}}{2a} \\
&= \frac{-(-1)\pm\sqrt{(-1)^2-4\cdot 1 \cdot (-0,24)}}{2\cdot 1} \\
&= \frac{1\pm\sqrt{1+0,96}}{2} \\
&= \frac{1\pm\sqrt{1,96}}{2} \\
&= \frac{1\pm 1,4}{2}
\end{aligned}

Karena ada dua penyelesaian nilai t maka diambil yang bernilai positif :
\begin{aligned}
t &= \frac{1+1,4}{2} \\
&= \frac{2,4}{2} \\
&= 1,2 \quad \textrm{s}
\end{aligned}

Jarak mendatar yang ditempuh bola dari A ke C adalah :
\begin{aligned}
l &= x \\
&= v_o \cos \theta \cdot t \\
&= 10 \cos 30 \cdot 1,2 \\
&= 6\sqrt{3} \\
&= 10,4 \quad \textrm{m}
\end{aligned}

Jawaban : D

Soal Gerak Parabola Beserta Pembahasannya no 4
Sebuah peluru ditembakkan dengan arah horizontal pada kecepatan awal v dan dari ketinggian h dari permukaan tanah.
(1) Kecepatan awal v
(2) Ketinggian h
(3) Percepatan gravitasi
(4) Massa peluru
Jika gesekan dengan udara diabaikan, jarak horizontal yang ditempuh peluru bergantung pada besaran nomor ….
A. (4)
B. (1) dan (3)
C. (2) dan (4)
D. (1), (2), dan (3)
E. (1), (2), (3), dan (4)

Pembahasan gerak parabola :
Yang mempengaruhi jarak horisontal yang ditempuh peluru adalah kecepatan awal v, ketinggian h, dan percepatan gravitasi.

Jawaban : D

Soal Gerak Parabola No. 5
Seorang pemain ski melompat dengan sudut 37o dan kelajuan vo = 10 m/s, kemudian ia mendarat dan menempuh jarak sejauh d pada bidang miring seperti gambar di bawah ini.
contoh soal gerak parabola beserta pembahasan
Jika sudut kemiringan bidang 37o, jarak d yang ditempuh adalah …. (asumsikan g = 10 m/s2 dan sin 37o = 0,6)
A. 24 m
B. 20 m
C. 16 m
D. 12 m
E. 8 m

Pembahasan :
Perhatikan gambar berikut.
contoh soal gerak parabola beserta pembahasannya
Jarak horizontal :
\begin{aligned}
x &= d\cos 37 \\
v_o \cos 37 \cdot t &= d\cos 37 \\
d &= 10t
\end{aligned}

Jarak vertikal :
\begin{aligned}
y &= v_o \sin 37 \cdot t -\frac{1}{2} gt^2 \\
-d \sin 37 &= 10\cdot 0,6\cdot t -\frac{1}{2}\cdot 10 \cdot t^2
\end{aligned}

Karena d = 10t , maka persamaan di atas menjadi :
\begin{aligned}
-d \sin 37 &= 10\cdot 0,6\cdot t -\frac{1}{2}\cdot 10 \cdot t^2 \\
-10t \cdot 0,6 &= 10\cdot 0,6\cdot t -\frac{1}{2}\cdot 10 \cdot t^2 \\
-6t &= 6t -5t^2 \\
-12t &= -5t^2 \\
-12 &= -5t \\
t &= \frac{-12}{-5} \\
&= 2,4 \quad \textrm{s}
\end{aligned}

Jadi jarak d adalah :
\begin{aligned}
d &= 10t \\
&= 10\cdot 2,4 \\
&= 24 \quad \textrm{m}
\end{aligned}

Jawaban : A

Soal Pilihan Ganda Gerak Parabola Dan Pembahasan

Soal gerak parabola pilihan ganda dan pembahasan no. 6
Perhatikan gambar berikut :
soal fisika gerak parabola dan pembahasan
Sebuah pesawat terbang bergerak mendatar dengan kecepatan 200 m/s melepaskan bom dari ketinggian 500 m. Jika bom jatuh di B dan g = 10 m/s2, maka jarak AB adalah ….
A. 500 m
B. 1.000 m
C. 1.500 m
D. 1.750 m
E. 2.000 m

Pembahasan soal pilihan ganda gerak parabola :
Waktu jatuh bom :
\begin{aligned}
t &= \sqrt{\frac{2h}{g}} \\
&= \sqrt{\frac{2\cdot 500}{10}} \\
&= 10 \quad \textrm{s}
\end{aligned}

Jarak AB :
\begin{aligned}
x_{AB} &= v\cdot t \\
&= 200 \cdot 10 \\
&= 2.000 \quad \textrm{m}
\end{aligned}

Jawaban soal pilihan ganda gerak parabola : E

Soal gerak parabola no. 7
Sebuah mobik hendak menyeberangi sebuah parit yang lebarnya 4,0 meter. Perbedaan tinggi antara kedua parit itu adalah 15 cm seperti yang ditunjukkan oleh gambar di bawah ini.
kumpulan soal gerak parabola dan pembahasan
Jika percepatan gravitasi g = 10 m/s2 , maka besarnya kelajuan minimum yang diperlukan oleh mobil tersebut agar penyeberangan mobil itu tepat dapat berlangsung adalah ….
A. 10 m/s
B. 15 m/s
C. 17 m/s
D. 20 m/s
E. 23 m/s

Pembahasan :

Waktu jatuhnya mobil :
\begin{aligned}
t &= \sqrt{\frac{2h}{g}} \\
&= \sqrt{\frac{2\cdot 0,15}{10}} \\
&= 0,1\sqrt{3} \quad \textrm{s}
\end{aligned}

Kelajuan minimum mobil :
\begin{aligned}
v &= \frac{x}{t} \\
&= \frac{4}{0,1\sqrt{3}} \\
&= 23 \quad \textrm{m/s}
\end{aligned}

Jawaban : E

Soal gerak parabola no. 8
Sebuah peluru dengan massa 20 gram ditembakkan dengan sudut elevasi 30o dan dengan kecepatan 40 m/s. Jika gesekan dengan udara diabaikan, maka ketinggian maksimum peluru (dalam m) adalah ….
A. 10 m
B. 20 m
C. 25 m
D. 30 m
E. 40 m

Pembahasan :
\begin{aligned}
h_{maks} &= \frac{v_o^2(\sin \theta)^2}{2g} \\
&= \frac{40^2(\sin 30)^2
)^2}{2\cdot 10} \\
&= \frac{1600 \cdot (\frac{1}{2})^2}{20} \\
&= \frac{400}{200} \\
&= 20 \quad \textrm{m}
\end{aligned}

Jawaban : B

Soal gerak parabaola no. 9
Peluru ditembakkan dari tanah condong ke atas dengan kecepatan v dan sudut elevasi 45o, dan mengenai sasaran di tanah yang jarak mendatarnya sejauh 2 x 105 m. Bila percepatan gravitasi 10 m/s2, maka nilai v adalah ….
A. 7,0 x 102 m/s
B. 1,4 x 103 m/s
C. 2,1 x 103 m/s
D. 3,5 x 103 m/s
E. 4,9 x 103 m/s

Pembahasan :
\begin{aligned}
x_{maks} &= \frac{v_o^2(\sin 2\theta)}{g} \\
2\times 10^5 &= \frac{v_o^2(\sin (2 \cdot 45)}{10} \\
2\times 10^6 &= v_o^2(\sin (90) \\
2\times 10^6 &= v_o^2\cdot 1 \\
v_o^2 &= 2\times 10^6 \\
v_o &= \sqrt{2\times 10^6} \\
&= 10^3 \sqrt{2}\\
&= 1,4 \times 10^3 \quad \textrm{m/s}
\end{aligned}

Jawaban : B

Soal gerak parabola no. 10
Sebuah peluru ditembakkan dengan sudut α. Jika jarak terjauh peluru sama dengan tinggi maskimumnya, maka nilai tan α adalah ….
A. 1
B. √3
C. 2
D. √6
E. 4

Pembahasan :
\begin{aligned}
x_{maks} &= y_{maks} \\
\frac{v_o^2 \sin 2\alpha}{g} &= \frac{v_o^2 (\sin \alpha)^2}{g} \\
2\cdot \sin \alpha \cdot \cos \alpha &= \frac{1}{2} \sin \alpha \cdot \sin \alpha \\
4 &= \frac{\sin \alpha}{ \cos \alpha} \\
\tan \alpha &= 4
\end{aligned}

Jawaban : E

 

Leave a Reply